A MELATONINA MODULA A RESPOSTA ANTIOXIDANTE E PROTEGE OS HEPATÓCITOS DE RATOS COM INSUFICIÊNCIA HEPÁTICA AGUDA GRAVE

Autores

  • Jeferson de Oliveira Salvi Departamento de Farmácia Centro Universitário Luterano de Ji-Paraná (CEULJI/ULBRA) Ji-Paraná, RO Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde. Universidade Luterano do Brasil (ULBRA), Canoas, RS.
  • Elizângela Gonçalves Schemitt Universidade Federal do Rio Grande do Sul (UFRGS)
  • Sandielly Rebeca da Fonseca Universidade Federal do Rio Grande do Sul (UFRGS)
  • Renata Minuzzo Hartmann Universidade Federal do Rio Grande do Sul (UFRGS)
  • Josieli Raskopf Colares Universidade Federal do Rio Grande do Sul (UFRGS)
  • Cláudio Augusto Marroni Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
  • Jaqueline Nascimento Picada PPGBioSaude, Laboratory of Genetic Toxicology, ULBRA, Canoas, RS, Brazil;
  • Norma Anair Possa Marroni HCPA, Porto Alegre, RS, Brazil

Palavras-chave:

Acetamide-N-(2-(5-methoxy-1H-indol-3-yl)ethyl), Antioxidants, Oxidative stress, Free radicals

Resumo

Severe acute liver failure is a rare clinical condition that affects previously normal livers and is rapid and fulminant. This study aimed to investigate the effects of melatonin on hepatocyte degeneration and loss of function. An experimental study was conducted using thioacetamide to induce liver failure in Wistar rats. After total protein assay, cell membrane damage was assessed, followed by carbonyl groups assay. The concentration of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, the level of ammonia, and the activity of superoxide dismutase and catalase were assayed by spectrophotometry. Inorganic elements were identified by particle-induced X-ray emission, the Keap1-Nrf2 pathway was determined by immunohistochemistry, and the structure of liver parenchyma was assessed by histology and by electron microscopy. Melatonin reduces lipid peroxidation and protein carbonylation, maintains liver integrity, modulates antioxidant response and ammonia levels, and preserves the architecture of the parenchyma and the structure of hepatocyte organelles.

Biografia do Autor

Jeferson de Oliveira Salvi, Departamento de Farmácia Centro Universitário Luterano de Ji-Paraná (CEULJI/ULBRA) Ji-Paraná, RO Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde. Universidade Luterano do Brasil (ULBRA), Canoas, RS.

Farmacêutico generalista, especialista em Acupuntura. Atualmente faz mestrado em Biologia Celular e Molecular Aplica à Saúde, especificamente na linha de pesquisa de Estresse Oxidativo e Antioxidantes. É docente das disciplinas de Embriologia, Histologia, Farmacologia e Toxicologia para os cursos de Biomedicina, Enfermagem e Farmácia no Centro Universitário Luterano de Ji-Paraná.

Elizângela Gonçalves Schemitt, Universidade Federal do Rio Grande do Sul (UFRGS)

PhD, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil

Sandielly Rebeca da Fonseca, Universidade Federal do Rio Grande do Sul (UFRGS)

Graduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, RS, Brazil

Renata Minuzzo Hartmann, Universidade Federal do Rio Grande do Sul (UFRGS)

PhD, Medicine, UFRGS, Porto Alegre, RS, Brazil

Josieli Raskopf Colares, Universidade Federal do Rio Grande do Sul (UFRGS)

Graduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, RS, Brazil

Cláudio Augusto Marroni, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil

PhD, Sciences: Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil

Jaqueline Nascimento Picada, PPGBioSaude, Laboratory of Genetic Toxicology, ULBRA, Canoas, RS, Brazil;

PPGBioSaude, Laboratory of Genetic Toxicology, ULBRA, Canoas, RS, Brazil;

Norma Anair Possa Marroni, HCPA, Porto Alegre, RS, Brazil

Graduate Program in Medicine: Medical Sciences; Laboratory of Experimental Hepatology and Gastroenterology, HCPA, Porto Alegre, RS, Brazil

Referências

[1] Guilder. L.; Pula. S.; Pierre, G. Metabolic disorders presenting as liver disease. Paediatr Child Health. v. 27, p. 533-539, 2017.
[2] Romero, M.; Palmer, S. L.; Kahn, J. A.; Ihde, L.; Lin, L. M.; Kosco, A.; Shinar, R.; Ghandforoush, A.; Chan, L. S.; Petrovic L. M.; Sher, L. S.; Fong, Tse-Ling. Imaging appearance in acute liver failure: correlation with clinical and pathology findings. Dig Dis Sci 59:1987-1995. https://doi.org/10.1007/s10620-014-3106-6.7
[3] Yang, X. F.; He, Y.; Li, H. Y.; Liu, X.; Chen, H.; Liu, J. B.; Ji, W. J.; Wang, B.; Chen, L. N. Hepatoprotective effects of erythropoietin on D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure in mice. Mol Med Rep. v. 10, 555-559, 2014. https://doi.org/10.3892/mmr.2014.2164.
[4] Rovegno, M.; Vera, M.; Ruiz, A.; Benítez, C. Current concepts in acute liver failure. Ann Hepatol, v. 18, p. 543-552, 2019. https://doi.org/10.1016/j.aohep.2019.04.008.
[5] Malhi, H.; Guicciardi, M. E.; Gores, G. J. Hepatocyte death: a clear and present danger. Physiol Rev. v. 90, p. 1165-1194, 2010. https://doi.org/10.1152/physrev.00061.2009.
[6] Njoku, D. B. Drug-induced hepatotoxicity: metabolic, genetic and immunological basis. Int J Mol Sci, v. 15, p. 6990-7003, 2014. https://doi.org/10.3390/ijms15046990.
[7] Kopec, A. K.; Joshi, N. Luyendyk, J. P. Role of hemostatic factors in hepatic injury and disease: animal models de-liver. J Thromb Haemost, v. 14, p.1337-1349, 2016. https://doi.org/10.1111/jth.13327.
[8] Schemitt, E. G.; Hartmann, R. M.; Colares, J. R.; Licks, F.; Salvi, J. O.; Marroni, C. A.; Marroni, N. P. Protective action of glutamine in rats with severe acute liver failure. World J Hepatol, v. 1, p. 273-286, 2019. https://doi.org/ 10.4254/wjh.v11.i3.273.
[9] Ayala, A.; Munoz, M. F.; Arguelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev, 2014:360438, 2014. https://doi.org/10.1155/2014/360438.
[10] Halliwell, B.; Gutteridge, J. M. C. Free radicals in biology and medicine. Oxford University Press, New York, 2007.
[11] Igielska-Kalwat, J.; Gościańska, J.; Nowak, I. Carotenoids as natural antioxidants. Postepy Hig Med Dosw (Online), vol. 69, p. 418-428, 2015. https://doi.org/10.5604/17322693.1148335.
[12] Sies, H. Oxidative stress: oxidants and antioxidants. Exp Physiol, v. 82, p. 291-295, 1997. https://doi.org/10.1113/expphysiol.1997.sp004024.
[13] Lu, J. M.; Lin, P. H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med, vol. 14, p. 840-860, 2010. https://doi.org/10.1111/j.1582-4934.2009.00897.
[14] Mates, J. M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, v. 153, p. 83-104, 2000. https://doi.org/10.1016/S0300-483X(00)00306-1.
[15] Gao, F.; Kinnula, V. L.; Myllarniemi, M.; Oury, T. D. Extracellular superoxide dismutase in pulmonary fibrosis. Antioxid Redox Signal, v. 10, p. 343-354. 2008. https://doi.org/10.1089/ars.2007.1908.
[16] Nowak, J. Z.; Zawilska, J. B. Melatonin and its physiological and therapeutic properties. Pharm World Sci, v. 20, v. 18-27, 1998. https://doi.org/10.1023/A:1008688724058.
[17] Sangsopha, J.; Johns, N. P.; Johns, J.; Moongngarm, A. Dietary sources of melatonin and benefits from production of high melatonin pasteurized milk. J Food Sci Technol, 2020. https://doi.org/10.1007/s13197-020-04236-5.
[18] Claustrat, B.; Leston, J. Melatonin: Physiological effects in humans. Neurochirurgie v. 61, p. 77-84, 2015. https://doi.org/10.1016/j.neuchi.2015.03.002.
[19] Song, J.; Kang, S. M.; Lee, K. M.; Lee, J. E. The protective effect of melatonin on neural stem cell against LPS-induced inflammation. Biomed Res Int, 2015:854359, 2015. https://doi.org/10.1155/2015/854359.
[20] Ramis, M. R.; Esteban, S.; Miralles, A.; Tan, D. X.; Reiter, R. J. Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress: a review. Curr Med Chem, v. 22, p. 2690-2711, 2015. https://doi.org/10.2174/0929867322666150619104143.
[21] Brasil. Ministério da Ciência, Tecnologia e Inovação. Resolução normativa n 30, de 2 de fevereiro de 2016. Baixa a Diretriz Brasileira para o Cuidado e a Utilização de Animais em Atividades de Ensino ou de Pesquisa Científica - DBCA. Diário Oficial da União.
[22] Schemitt, E. G.; Colares, J. R.; Hartmann, R. M.; Morgan-Martins, M. I.; Marroni, C. A.; Tuñón, M. J.; Marroni, N. P. Effect of glutamine on oxidative stress and inflammation in a rat model of fulminant hepatic failure. Nutr Hosp, v. 33, p. 210-219, 2016.
[23] Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, v. 72 p.248-254, 1976. https://doi.org/10.1006/abio.1976.9999.
[24] Buege J. A.; Aust, S. D. Microsomal lipid peroxidation. Methods Enzymol, v. 52, p. 302-310, 1978. https://doi.org/10.1016/s0076-6879(78)52032-6.
[25] Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A. G.; Ahn, B. W.; Shaltiel, S.; Stadtman, E. R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol, v. 186, p. 464-478, 1990. https://doi.org/10.1016/0076-6879(90)86141-h.
[26] Mondzac, A.; Ehrlich, G. E.; Seegmiller, J. E. An enzymatic determination of ammonia in biological fluids. J Lab Clin Med, v. 66, p. 526-531, 1965.
[27] Misra, H. P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem, v. 247, p. 3170-3175, 1972.
[28] Boveris, A. Chance, B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J, v. 134, p. 707-716, 1973. https://doi.org/10.1042/bj1340707.
[29] Johansson, S. A. E.; Campbell, J. L.; Malmqvist, K. G. Particle-induced X-Ray emission spectrometry (PIXE). John Wiley & Sons, New York, 2005.
[30] Espitia-Perez, L.; da Silva, J.; Espitia-Perez, P.; Brango, H.; Salcedo-Arteaga, S.; Hoyos-Giraldo, L. S.; Souza, C. T.; Dias, J. F.; Agudelo-Castañeda, D.; Toscano, A. V.; Gómez-Pérez, M.; Henriques, J. A. P. Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM10 and PM2.5 levels. Ecotoxicol Environ Saf, v. 148, p. 453-466, 2018. https://doi.org/10.1016/j.ecoenv.2017.10.044.
[31] Lefkowitch, J. H. The Pathology of Acute Liver Failure. Adv Anat Pathol, v. 23, p. 144-158, 2016. https://doi.org/10.1097/PAP.0000000000000112.
[32] Camargo, C. A. Jr.; Madden, J. F.; Gao, W.; Selvan, R. S.; Clavien, P. Interleukin-6 protects liver against warm ischemia/reperfusion injury and promotes hepatocyte proliferation in the rodent. Hepatology, v. 26, p. 1513-1520, 1997. https://doi.org/10.1002/hep.510260619.
[33] Hussein, M. T.; Mokhtar, D. M.; Hassan, A. H. S. Melatonin activates the vascular elements, telocytes, and neuroimmune communication in the adrenal gland of Soay rams during the non-breeding season. Protoplasma, v. 257, p. 353-369, 2020. https://doi.org/10.1007/s00709-019-01441-8.
[34] Winey, M.; Meehl, J. B.; O´Toole, E. T.; Giddings, T. H. Jr. Conventional transmission electron microscopy. Mol Biol Cell, v. 25, p. 319-323, 2014. https://doi.org/10.1091/mbc.E12-12-0863.
[35] Tanaka, K.; Mitsushima, A. A preparation method for observing intracellular structures by scanning electron microscopy. J Microsc, v. 133, p. 213-322, 1984. https://doi.org/10.1111/j.1365-2818.1984.tb00487.
[36] Maes, M.; Vinken, M.; Jaeschke, H. Experimental models of hepatotoxicity related to acute liver failure. Toxicol Appl Pharmacol, v. 290, p. 86-97, 2016. https://doi.org/10.1016/j.taap.2015.11.016.
[37] Koen, Y. M.; Sarma, D.; Hajovsky, H.; Galeva, N. A; Williams, T. D.; Staudinger, J. L.; Hanzlik, R. P. Protein Targets of Thioacetamide Metabolites in Rat Hepatocytes. Chem Res Toxicol, v. 26, p. 564-574, 2013. https://doi.org/10.1021/tx400001x.
[38] Abdelaziz, R. R.; Elkashef, W. F.; Said, E. Tranilast reduces serum IL-6 and IL-13 and protects against thioacetamide-induced acute liver injury and hepatic encephalopathy. Environ Toxicol and Phar, v. 40, p. 259-267, 2015. https://doi.org/10.1016/j.etap.2015.06.019.
[39] Butterworth, R. F.; Norenberg, M. D.; Felipo, V.; Ferenci, P.; Albrecht, J.; Blei, A.T. Members of the ISHEN Commission on Experimental Models of HE. Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver Int, v. 29, p; 783-788, 2009. https://doi.org/10.1111/j.1478-3231.2009.02034.x.
[40] Shirato, T.; Homma, T.; Lee, J.; Kurahashi, T.; Fujii, J. Oxidative stress caused by a SOD1 deficiency ameliorates thioacetamide triggered cell death via CYP2E1 inhibition but stimulates liver steatosis. Arch Toxicol, v. 91, p. 1319-1333, 2016. https://doi.org/10.1007/s00204-016-1785-9.
[41] Sookoian, S.; Pirola, C. J. Liver enzymes, metabolomics and genome-wide association studies: From systems biology to the personalized medicine. World J Gastroenterol, v. 21, p. 711-725, 2015. https://doi.org/10.3748/wjg.v21.i3.711.
[42] Koeppen, B. M.; Stanton, B. A. Berne & Levy: fisiologia. Elsevier, Rio de Janeiro, 2009.
[43] McPhee, S. J.; Ganong, W. F. Fisiopatologia da doença: uma introdução à medicina clínica. AMGH, Porto Alegre, 2011.
[44] Ozsoy, M.; Gonul, Y.; Ozkececi, Z. T.; Bali, A.; Celep, R. B.; Koçak, A.; Adali, F.; Tosun, M.; Celik, S. The protective effect of melatonin on remote organ liver ischemia and reperfusion injury following aortic clamping. Ann Ital Chir, v. 87, p. 271-279, 2016.
[45] Chojnacki, C.; Blońska, A.; Chojnacki, J. The Effects of Melatonin on Elevated Liver Enzymes during Statin Treatment. Biomed Res Int, 2017:3204504, 2017. https://doi.org/10.1155/2017/3204504.
[46] Shokrzadeh, M.; Ahmadi, A.; Naghshvar, F.; Chabra, A.; Jafarinejhad, M. Prophylactic efficacy of Melatonin on cyclophosphamide-induced Liver Toxicity in Mice. Biomed Res Int, 2014:470425, 2014. https://doi.org/10.1155/2014/470425.
[47] De-David, C.; Rodrigues, G.; Bona, S.; Meurer, L.; González-Gallego, J.; Tuñón, M. J.; Marroni, N. P. Role of quercetin in preventing thioacetamide-induced liver injury in rats. Toxicol Pathol, v. 39, p. 949-957, 2011. https://doi.org/10.1177/0192623311418680.
[48] Czechowska, G.; Celinski, K.; Korolczuk, A.; Wojcicka, G.; Dudka, J.; Bojarska, A.; Reiter, R. J. Protective effects of melatonin against thioacetamide-induced liver fibrosis in rats. J Physiol Pharmacol, v. 66, p. 567-579, 2015.
[49] Lena, P. J.; Subramanian, P. Effects of melatonin on the levels of antioxidants and lipid peroxidation products in rats treated with ammonium acetate. Pharmazie v. 59, p. 636-639, 2004.
[50] Túnez, I.; Munõz, M. C.; Medina, F. J.; Salcedo, M.; Feijóo, M.; Montilla, P. Comparasion of melatonina, vitamin E and L-carnitine in the treatment of neuro-and hepatotoxicity by thioacetamide. Cell Biochem Funct, v. 25, p. 119-127, 2007. https://doi.org/10.1002/cbf.1276.
[51] Lebda, M. A.; Sadek, K. M.; Abouzed, T. K.; Tohamy, H. G.; El-sayed, Y. S. Melatonin mitigates thioacetamide-induced hepatic fibrosis via antioxidant activity and modulation of proinflammatory cytokines and fibrogenic genes. Life Sci, v. 192, p. 136-143, 2018. https://doi.org/10.1016/j.lfs.2017.11.036.
[52] Lima, L. C. D.; Miranda, A. S.; Ferreira, R. N.; Rachid, M. A.; Silva, A. C. S. Hepatic encephalopathy: Lessons from preclinical studies. World J Hepatol, v. 11, p. 173-185, 2017. https://doi.org/10.4254/wjh.v11.i2.173.
[53] Mansour, S. Z.; El-Marakby, S. M.; Moawed, F. S. M. Ameliorative effects of rutin on hepatic encephalopathy-induced by thioacetamide or gamma irradiation. ‎J. Photochem Photobiol B, v. 172, p. 20-27, 2017. https://doi.org/10.1016/j.jphotobiol.2017.05.005.
[54] Mohsenin, V. Assessment and management of cerebral edema and intracranial hypertension in acute liver failure. J Crit Care, v. 28, p. 783-791, 2013. https://doi.org/10.1016/j.jcrc.2013.04.002.
[55] Savy, N.; Brossier, D.; Brunel-Guitton, C.; Ducharme-Crevier, L.; Du Pont-Thibodeau, G.; Jouvet, P. Acute pediatric hyperammonemia: current diagnosis and management strategies. Hepat Med, v. 10, p. 105-115. https://doi.org/10.2147/HMER.S140711.
[56] Anand, A. C.; Singh, P. Neurological recovery after recovery from acute liver failure: Is it complete?, J Clin Exp Hepatol, v. 9, p. 99-108, 2019. https://doi.org/10.1016/j.jceh.2018.06.005.
[57] Niknahad, H.; Jamshidzadeh, A.; Heidari, R.; Zarei, M.; Ommati, M. M. Ammonia-induced mitochondrial dysfunction and energy metabolism disturbances in isolated brain and liver mitochondria, and the effect of taurine administration: relevance to hepatic encephalopathy treatment. Clin Exp Hepatol, v. 3, p. 141-151, 2017. https://doi.org/10.5114/ceh.2017.68833.
[58] Bona, S.; Rodrigues, G.; Moreira, A. J.; Di Naso, F. C.; Dias, A. S.; Da Silveira, R. T.; Marroni, C. A.; Marroni, N. P. Antifibrogenic effect of melatonin in rats with experimental liver cirrhosis induced by carbon tetrachloride. JGH Open, v. 2, p. 117-123, 2018. https://doi.org/10.1002/jgh3.12055.
[59] Colares, J.R.; Sdechemitt, E. G.; Hartmann, R. M.; Licks, F.; Soares, M. D.; Bosco, A. D.; Marroni, N. P. Antioxidant and anti-inflammatory action of melatonin in an experimental model of secondary biliary cirrhosis induced by bile duct ligation. World J Gastroenterol, v. 22, p. 8918-8928, 2016 https://doi.org/10.3748/wjg.v22.i40.8918.
[60] Kurhaluk, N.; Bojkova, B.; RadKowski, M.; Zaitseva, O. V.; Kyriienko, S.; Demkov, U.; Winklewski, P. J. Melatonin and Metformin Diminish Oxidative Stress in Heart Tissue in a Rat Model of High Fat Diet and Mammary Carcinogenesis. In: Pokorski M (ed) Clinical Investigation, v 1047. Springer International Publishing, Cham, 2018.
[61] Raza, Z.; Naureen, Z. Melatonin ameliorates the drug induced nephrotoxicity: Molecular insights. Nefrología, v. 40, n. 1, p. 12-25, 2020. https://doi.org/10.1016/j.nefro.2019.06.009.
[62]. Li, S.; Tan, H. Y.; Wang, N.; Zhang, Z. J.; Lao, L.; Wong, C. W.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci, 16:26087-26124, 2015. https://doi.org/10.3390/ijms161125942.
[63] Demirtas, C. Y.; Pasaoglu, O. T.; Bircan, F. S.; Kantar, S.; Turkozkan, N. The investigation of melatonin effect on liver antioxidant and oxidant levels in fructose-mediated metabolic syndrome model. Eur Rev Med Pharmacol Sci, v. 19, p.1915-1921.
[64] Shimizu, T.; Nojiri, H.; Kawakami, S.; Uchiyama, S.; Shirasawa, T. Model mice for tissue-specific deletion of the manganese superoxide dismutase gene. Geriatr Gerontol Int, v. 10, Suppl 1, p. S70-S79, 2010. https://doi.org/10.1111/j.1447-0594.2010.00604.x.
[65] Cakmak, K. I.; Simsek, G.; Yildiz, A.; Vardi, N.; Polat, A.; Tanbek, K.; Gurocak, S.; Parlakpinar, H. Melatonin's protective effect on the salivary gland against ionized radiation damage in rats. J Oral Pathol Med, v. 45, p. 444-449, 2016. https://doi.org/10.1111/jop.12386.
[66] Sokolovic, D.; Djordjevic, B.; Kocic, G.; Stoimenov, T.; Stanojkovic Z.; Sokolovic, D. M.; Veljkovic, A.; Ristic G.; Despotovic, M.; Milisavljevic D.; Jankovic R.; Binic I. The Effects of Melatonin on Oxidative Stress Parameters and DNA Fragmentation in Testicular Tissue of Rats Exposed to Microwave Radiation. Adv Clin Exp Med, v. 24, p. 429-436, 2015. https://doi.org/10.17219/acem/43888.
[67] Emamgholipour, S.; Hossein-Nezhad, A.; Sahraian, M. A.; Askarisadr, F.; Ansari, M. Evidence for possible role of melatonin in reducing oxidative stress in multiple sclerosis through its effect on SIRT1 and antioxidant enzymes. Life Sci, v. 145, p. 34-41, 2016. https://doi.org/10.1016/j.lfs.2015.12.014.
[68] Madhu, P.; Reddy, K. P.; Reddy, P. S. Melatonin Reduces Oxidative Stress and Restores Mitochondrial Function in the Liver of Rats Exposed to Chemotherapeutics. J Exp Zool A Ecol Genet Physiol, v. 323, p. 301-308, 2015. https://doi.org/10.1002/jez.1917.
[69] Milnerowicz, H.; Sciskalska, M.; Dul, M. Pro-inflammatory effects of metals in persons and animals exposed to tobacco smoke. J Trace Elem Med Biol, v. 29, p. 1-10, 2015. https://doi.org/10.1016/j.jtemb.2014.04.008.
[70] Rohrdanz, E.; Kahl, R. Alterations of antioxidant enzyme expression in response to hydrogen peroxide. Free Radic Biol Med, v. 24, p. 27-38, 1998. https://doi.org/10.1016/s0891-5849(97)00159-7.
[71] Moraes, T. B.; Jacques, C. E.; Rosa, A. P.; Dalazen, G. R.; Terra, M.; Coelho, J. G.; Dutra-Filho, C. S. Role of catalase and superoxide dismutase activities on oxidative stress in the brain of a phenylketonuria animal model and the effect of lipoic acid. Cell Mol Neurobiol, v. 33, p. 253-260, 2013. https://doi.org/10.1007/s10571-012-9892-5.
[72] Xu, P.; Li, Y.; Yu, Z.; Yang, L.; Shang, R.; Yan, Z. Protective Effect of Vitamin C on Triptolide-induced Acute Hepatotoxicity in Mice through mitigation of oxidative stress. An Acad Bras Cienc, 91:e20181257, 2019. https://doi.org/10.1590/0001-3765201920181257.
[73] Tan, D. X.; Manchester, L. C.; Hardeland, R.; Lopez-Burillo, S.; Mayo, J. C.; Sainz, R. M.; Reiter, R. J. Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res, v. 34, p. 75-78, 2003. https://doi.org/10.1034/j.1600-079x.2003.02111.x.
[74] Jou, M. J.; Peng, T. I.; Reiter, R. J. Protective stabilization of mitochondrial permeability transition and mitochondrial oxidation during mitochondrial Ca(2+) stress by melatonin's cascade metabolites C3-OHM and AFMK in RBA1 astrocytes. J Pinea Res, 66:e12538, 2019. https://doi.org/10.1111/jpi.12538.
[75] Sheng, Y.; Abreu, I. A.; Cabelli, D. E.; Maroney, M. J.; Miller, A. F.; Teixeira, M.; Valentine, J. S. Superoxide dismutases and superoxide reductases. Chem Rev, 114:3854-3918, 2014. https://doi.org/10.1021/cr4005296.
[76] Ighodaro, O. M.; Akinloye, O. A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med, v. 54, p. 287-293, 2019. https://doi.org/10.1016/j.ajme.2017.09.001.
[77] Verma, D.; Hashim, O. H.; Jayapalan, J. J.; Subramanian, P. Effect of melatonin on antioxidant status and circadian activity rhythm during hepatocarcinogenesis in mice. J Cancer Res Therap, v. 10, p. 1040-1044, 2014. https://doi.org/10.4103/0973-1482.138227.
[78] Popov, S. S.; Shulgin, K. K.; Popova, T. N.; Pashkov, A. N.; Agarkov, A. A.; Carvalho, M. A. A. P. Effects of Melatonin-Aided Therapy on the Glutathione Antioxidant System Activity and Liver Protection. J Biochem Mol Toxicol, v. 29, p. 449-457, 2015. https://doi.org/10.1002/jbt.21705.
[79] Marroni, N. P.; Bona, S.; Rodrigues, G.; Moreira, A. J.; Silveira, T. R.; Marroni, C. A. P0090: Melatonin protects the liver in an experimental model of cirrhosis. J Hepatol, 62:S334, 2015. https://doi.org/10.1016/S0168-8278(15)30311-1.7
[80] Esteban-Zubero, E.; Alatorre-Jiménez, M. A. López-Pingarrón, L.; Reyes-Gonzales, M. C.; Souza, P. A.; Cantín-Golet, A.; Ruiz-Ruiz, F. C.; Tan, D. X.; García-García, J. J.; Reiter, R. J. Melatonin’s role in preventing toxin-related and sepsis-mediated hepatic damage: a review. Pharmacol Res, v. 105, p. 108-120, 2016. https://doi.org/10.1016/j.phrs.2016.01.018.
[81] Serikov, V. S.; Lyashev, Y. D, Effects of Melatonin on Stress-Induced Changes in the Liver of Rats with Different Resistance to Stress. Bull Exp Biol Med, v. 159, p. 314-317, 2015. https://doi.org/10.1007/s10517-015-2950-5.
[82] Sogabe, S.; Sakamoto, K.; Kamada, Y.; Kadotani, A.; Fukuda, Y.; Sakamoto, J. I. Discovery of a Kelch-like ECH-associated protein 1-inhibitory tetrapeptide and its structural characterization. Biochem Biophys Res Commun, v. 486, p. 620-625, 2017. https://doi.org/10.1016/j.bbrc.2017.03.038.
[83] Kansanen, E.; Kuosmanen, S. M.; Leinonen, H.; Levonen, A. L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol, v. 1, p. 45-49, 2013. https://doi.org/10.1016/j.redox.2012.10.001.7
[84] Stewart, J. D.; Hengstler, H. M.; Bolt. H. M.Control of oxidative stress by the Keap1-Nrf2 pathway. Arch Toxicol, v. 85. p. 239, 2011. https://doi.org/10.1007/s00204-011-0694-1.
[85] Ahmahi, Z.; Ashrafizadeh, M. Melatonin as a potential modulator of Nrf2. Fund Clin Pharmacol, v. 34, p. 11-19, 2019. https://doi.org/10.1111/fcp.12498.
[86] Manchester, L. C.; Coto-Montes, A.; Boga, J. A.; Andersen, L. P.; Zhou, Z.; Galano, A.; Vriend, J.; Tan, D. X.; Reiter, R. J. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res, v. 59, p. 403-419, 2015. https://doi.org/10.1111/jpi.12267.
[87] Deng, Y.; Zhu, J.; Mi, C.; Xu, B.; Jiao, C.; Li, Y.; Xu, D.; Liu, W.; Xu, Z. Melatonin Antagonizes Mn-Induced Oxidative Injury Through the Activation of Keap1–Nrf2–ARE Signaling Pathway in the Striatum of Mice. Neurotox Res, v. 27, p. 156-171, 2015. https://doi.org/10.1007/s12640-014-9489-5.
[88] Janjetovic, Z.; Jarret, S. G.; Lee, E. F.; Duprey, C.; Reiter, R. J.; Slominski, A. T. Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Scientific Reports, v. 7, p. 1274, 2017. https://doi.org/10.1038/s41598-017-01305-2.
[89] Mustafa, H. N.; El Awdan, S. A.; Hegazy, G. A. Protective role of antioxidants on thioacetamide-induced acute hepatic encephalopathy: biochemical and ultrastructural study. Tissue Cell, v. 45, p. 350-362, 2013. https://doi.org/10.1016/j.tice.2013.06.001.
[90] Vallejo, D.; Crespo, I.; San-Miguel, B.; Álvarez, M.; Prieto, J.; Tuñón, M. J.; González-Gallego, J. Autophagic response in the Rabbit Hemorrhagic Disease, an animal model of virally-induced fulminant hepatic failure. Vet Res, v. 45, p. 15, 2014. https://doi.org/10.1186/1297-9716-45-15.
[91] El-Sokkary, G. H.; Khidr, B. M.; Younes, H. A. Role of melatonin in reducing hypoxia-induced oxidative stress and morphological changes in the liver of male mice. Eur J Pharmacol, v. 540, p.107-114, 2006. https://doi.org/10.1016/j.ejphar.2006.04.036.7
[92] Wang, J.; He, W.; Tsai, P. J.; Chen, P. H.; Ye, M.; Guo, J.; Su, Z. Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease. Lipids Health Dis, v. 19, p. 72, 2020. https://doi.org/10.1186/s12944-020-01210-0.
[93] Seema, R.; Chandana, H. Melatonin ameliorates oxidative stress and induces cellular proliferation of lymphoid tissues of a tropical rodent, Funambulus pennanti, during reproductively active phase. Protoplasma, v. 250, p. 21-32, 2013. https://doi.org/10.1007/s00709-011-0367-1.
[94] Rosen, J.; Than, N. N.; Koch, D.; Poeggeler, B.; Laatsch, H.; Hardeland, R. Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J Pineal Res, v. 41, p. 374-381, 2006. https://doi.org/10.1111/j.1600-079X.2006.00379.x.
[95] Tan, D. X.; Hardeland, R.; Manchester, L. C.; Galano, A.; Reiter, R. J. Cyclic-3-hydroxymelatonin (C3HOM),a potent antioxidant, scavenges free radicals and suppresses oxidative reactions. Curr Med Chem, v. 21, p. 1557-1565, 2014. https://doi.org/10.2174/0929867321666131129113146.
[96] Kneidinger, H.; Mitulovic, G.; Hartmann, J.; Quint, R. M.; Getoff, N. Melatonin: Free Radicals and Metabolites Resulting by Emission and Consumption of Solvated Electrons (eaq-): Reaction Mechanisms. In Vivo, v. 29, p. 605-609, 2015.
[97] Buendia, I.; Navarro, E.; Michalska, P.; Gameiro, I.; Egea, J.; Abril, S.; López, A.; González-Lafuente, L.; López, M. G.; Léon, R. New melatonin-cinnamate hybrids as multi-target drugs for neurodegenerative diseases: Nrf2-induction, antioxidant effect and neuroprotection. Future Med Chem, v. 7. P, 1961-1969, 2015. https://doi.org/10.4155/fmc.15.99.
[98] Emet, M.; Ozcan, H.; Ozel, L.; Yayla, M.; Halici, Z.; Hacimuftuoglu, A. A Review of Melatonin, Its Receptors and Drugs. Eurasian J Med, v. 48, p. 135-141, 2016. https://doi.org/10.5152/eurasianjmed.2015.0267.
[99] Zhang, J. J.; Meng, X.; Li, Ya.; Zhou, Y.; Xu, D. P.; Li, S.; Li, H. B. Effects of Melatonin on Liver. Injuries and Diseases. Int J Mol Sci, 18:E673, 2017. https://doi.org/10.3390/ijms18040673.
[100] Oztopuz, O.; Turkon, H.; Buyuk, B.; Coskun, O.; Sehitoglu, M. H.; Ovali, M. A.; Uzun, M. Melatonin ameliorates sodium valproate-induced hepatotoxicity in rats. Mol Biol Rep, v. 47, p. 317-325, 2020. https://doi.org/10.1007/s11033-019-05134-6.

Downloads

Publicado

2020-07-28

Como Citar

Salvi, J. de O., Gonçalves Schemitt, E., Rebeca da Fonseca, S., Minuzzo Hartmann, R., Raskopf Colares, J., Augusto Marroni, C., … Anair Possa Marroni, N. (2020). A MELATONINA MODULA A RESPOSTA ANTIOXIDANTE E PROTEGE OS HEPATÓCITOS DE RATOS COM INSUFICIÊNCIA HEPÁTICA AGUDA GRAVE. South American Journal of Basic Education, Technical and Technological , 7(2), 280–312. Recuperado de https://teste-periodicos.ufac.br/index.php/SAJEBTT/article/view/4087

Edição

Seção

Ciências da Saúde

Artigos mais lidos pelo mesmo(s) autor(es)